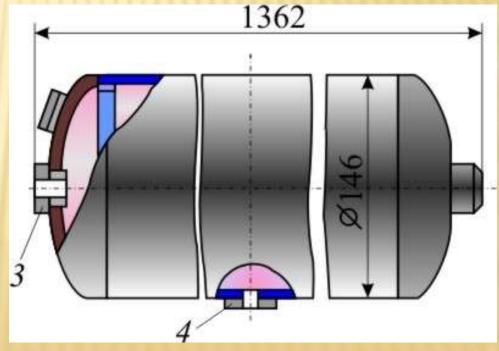
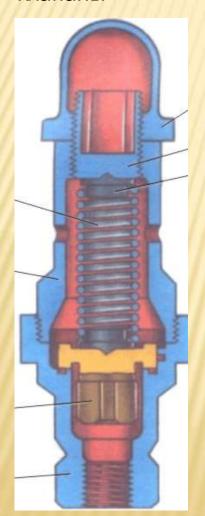
ЛЕКЦИЯ №8. КОМПРЕССОРЫ, ИХ КЛАССИФИКАЦИЯ И ПРИНЦИП ДЕЙСТВИЯ. ИНДИКАТОРНАЯ ДИАГРАММА И ОСНОВНЫЕ РАБОЧИЕ ПАРАМЕТРЫ ПОРШНЕВОГО КОМПРЕССОРА. РАСЧЕТ НЕОБХОДИМОЙ ПРОИЗВОДИТЕЛЬНОСТИ КОМПРЕССОРА И ОБЪЕМОВ ГЛАВНЫХ РЕЗЕРВУАРОВ.

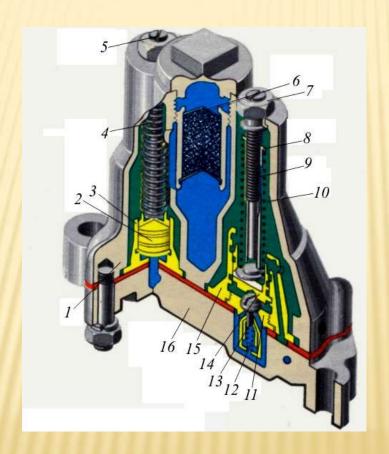
ТИПЫ ПРИБОРОВ ПИТАНИЯ ТОРМОЗОВ СЖАТЫМ ВОЗДУХОМ

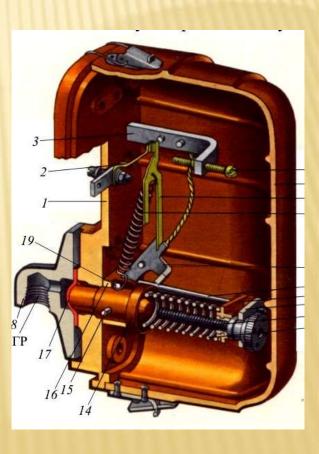

- •Компрессоры используются для создания запаса сжатого воздуха;
- •главные резервуары используются для хранения запаса сжатого воздуха;
- •регуляторы давления используются для поддержания давления сжатого воздуха в заданных пределах;
- •предохранительные клапана используются для предотвращения взрыва при неисправностях регуляторов давления;
- •влагоотделители; маслоотделители; входные фильтры; воздухоохладители используются для обеспечения требуемых физических характеристик сжатого воздуха.

ПРИБОРЫ ПИТАНИЯ ТОРМОЗОВ СЖАТЫМ ВОЗДУХОМ

1. Компрессоры

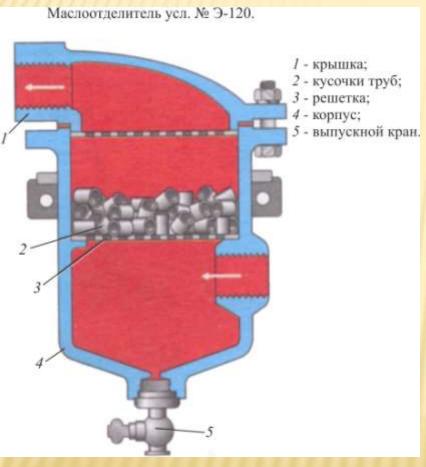

2. Главные резервуары

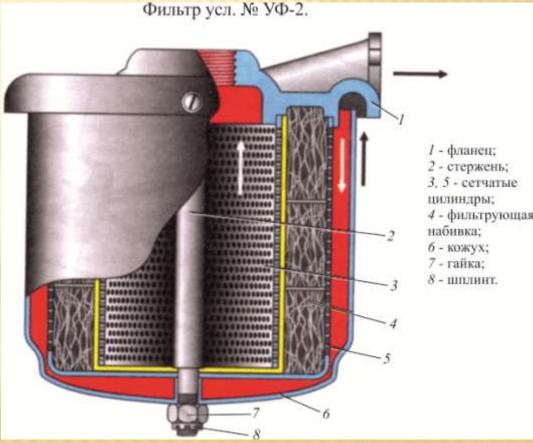



ПРИБОРЫ ПИТАНИЯ ТОРМОЗОВ СЖАТЫМ ВОЗДУХОМ

3. Предохранительные клапаны

4. Регуляторы давления





ПРИБОРЫ ПИТАНИЯ ТОРМОЗОВ СЖАТЫМ ВОЗДУХОМ

5. Маслоотделители

6. Фильтры

7. Воздухоохладители

КЛАССИФИКАЦИЯ КОМПРЕССОРОВ

По принципу действия: поршневые и винтовые. Поршневые компрессора подразделяются по:

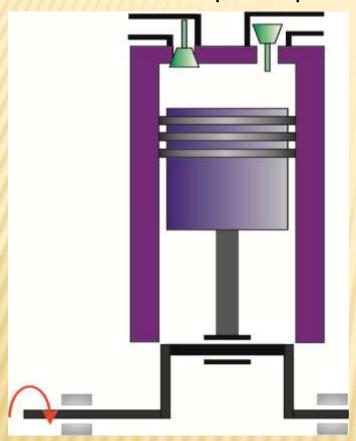
1. Числу цилиндров:

Одно, двух, трех, четырех и шестицилиндровые.

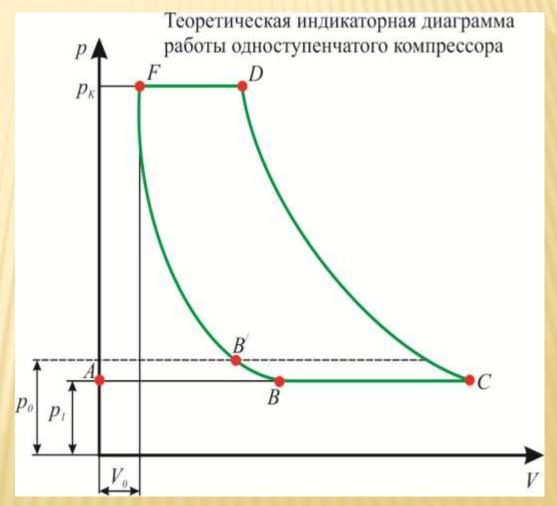
КЛАССИФИКАЦИЯ КОМПРЕССОРОВ

- 2. По числу ступеней сжатия: одноступенчатые и двухступенчатые;
- 3. По расположению цилиндров:

горизонтальные, вертикальные, W-образные, V - образные

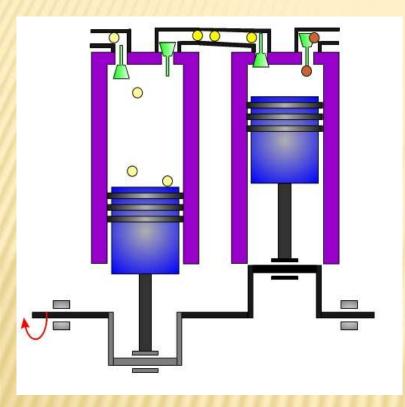


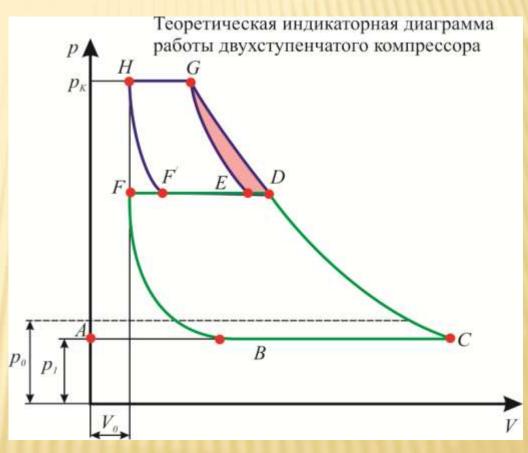
КЛАССИФИКАЦИЯ КОМПРЕССОРОВ


- 4. По типу привода: с приводом от электродвигателя и с приводом от дизеля;
- 5. По назначению: основные и вспомогательные.

ПРИНЦИП ДЕЙСТВИЯ ОДНОСТУПЕНЧАТОГО КОМПРЕССОРА

1. Схема компрессора


2. Индикаторная диаграмма



ПРИНЦИПИАЛЬНАЯ СХЕМА ДВУХСТУПЕНЧАТОГО КОМПРЕССОРА

1. Схема компрессора

2. Индикаторная диаграмма

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОМПРЕССОРОВ

Производительность компрессора: $Q = \frac{V(P_2 - P_1)}{t}$

t л/мин,

где: V - объем резервуара, л;

 P_2 - конечное давление в резервуаре, кгс/см²;

 P_1 - начальное давление в резервуаре, кгс/см²;

t - время повышения давления в резервуаре с начального до конечного давления.

Производительность компрессора локомотива определяют по времени повышения давления в **ГР** с **7,0** до **8,0 кгс/см**².

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОМПРЕССОРОВ

Объемный к.п.д. компрессора:

$$\eta_{o6} = \frac{V}{V_x}$$

где:

V- объемы всасываемого воздуха;

 $\mathbf{V}_{\mathbf{x}}$ - полный объем, описываемый поршнем при ходе их одного крайнего положения в другое.

Изотермический к.п.д. компрессора:

$$\eta_{RS} = \frac{N_{RS}}{N_{K}}$$

где: N_{из} - мощность, затрачиваемая теоретически при изотермическом сжатии;

 N_{κ} - мощность, необходимая для привода компрессора.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОМПРЕССОРОВ

- * Механический к.п.д. компрессора учитывает потери на трение в самом компрессоре и потери на привод вспомогательных механизмов вентилятора и масляного насоса. $\eta_M = \frac{N_i}{N}$
- **х** где: **N**_i индикаторная мощность (мощность, которая затрачивается на сжатие воздуха, определяемая по реальной индикаторной диаграмме).
- \times Для транспортных двухступенчатых компрессоров $\eta_{o6} = 0.7 0.75$; $\eta_{u3} = 0.40 0.55$; $\eta_{M} = 0.79 0.82$.

ОСНОВНЫЕ	TEX	НИ	4EC	CKV	IE X	AP	AKT	EPI	1CT	икі	1	
КОМПРЕССОРОВ												
Элементы характеристики	9500	KT6, KT7,	КТ6эл	ПК-35	ПК5,25			ВПЗ-4/9	BB- 1,5/9	ЭК-7Б (ЭК-7В)	K-2	
Н <mark>оминальная подача, мЗ/мин</mark>	1,75	5,3	2,75	3,5	5,25	3,5	1,75	3,5	1,75	0,62 (0,58)	2,63	
Частота вращения коленчатого вала, об/мин	200	850	440	1450	1450	1450	1450	1000	1000	560 (540)	720	
Д <mark>авление нагнетания, МПа</mark>	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,8	0,9	
Расположение цилиндров	// r/j	W	W	٧	٧	V	V	ГиВ	В	Г	W	
Число цилиндров: общее	2	3	3	2	6	4	2	2-д	1-д	2	2	
первой ступени	1	2	2	1	3	2	2	2	1	2	1	
второй ступени	1	1	1	1	3	1	1	2	1		1	
		Дν	аметр ци	линдров	, мм:							
первой ступени	245	198	198	190	140			185	185	112	155	

MOMULECCO	Обозначение										
Элементы характеристики	3500	KT6, KT7,	КТ6эл	ПК-35	ПК5,25	ПКЗ,5	ПК1,75	ВПЗ-4/9	BB- 1,5/9	ЭК-7Б (ЭК-7В)	K-2
Номинальная подача, м3/мин	1,75	5,3	2,75	3,5	5,25	3,5	1,75	3,5	1,75	0,62 (0,58)	2,6
Частота вращения коленчатого вала, об/мин	200	850	440	1450	1450	1450	1450	1000	1000	560 (540)	72
Давление нагнетания, МПа	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,8	0,9
Расположение цилиндров	// r/	W	W	V	٧	V	٧	ГиВ	В	Г	W
Число цилиндров: общее	2	3	3	2	6	4	2	2-д	1-д	2	2

140

225

670

384

15

8,6

второй ступени

ход поршня, мм

на 1 м3/мин

на 1 м3/мин

Масса компрессора, кг: общая

Потребляемая мощность, кВт: общая

155

144 и

646

122

44

8,3

155

144 и

630

295

24,2

8,76

146-1ct 146-1ct

153-2ст 153-2ст

110

110

350

108

32

9,15

80

98

310

59

37

7,04

152

80

344

114

21

7,02

152

80

238

136

13,3

7,6

92

118*

190

(203)

5,0 (4,7)

8,06

(8,1)

125

120

360

137

18,7

7,2

РАСЧЕТ ПОТРЕБНОЙ ПРОИЗВОДИТЕЛЬНОСТИ КОМПРЕССОРНОЙ УСТАНОВКИ

- Общая потребная производительность компрессора складывается из затрат:
- На питание утечек;
- на восстановление давлений после торможений;
- - на другие нужды (принимаем 12000л/час);

$$Q_{oби} = Q_{ymeчe\kappa} + Q_{mopмoжeния} + Q_{другиe}$$

РАСХОД ВОЗДУХА НА УТЕЧКИ

Расход воздуха на утечки в тормозной магистрали поезда можно определить по формуле:

$$Q_{\mathit{утечек}} = 60 \cdot \Delta p_{\mathit{утечек}} \cdot V_{\mathit{торм.сети}}$$

Допускаемые утечки из ТМ атм./мин;

$$\Delta p_{\text{утечек}} = 0,2$$
атм/ мин

$$V_{mopm.cemu} = (V_{\textit{маг.}} + V_{\textit{3P}} + V_{\textit{P.P.}}) \cdot N_{\textit{ваг}}$$

Объем тормозной сети поезда, л

где $V_{\text{маг}}$ – объем магистрального воздухопровода (для одного грузового вагона может быть принят равным 14,2 л);

 V_{3P} – объем запасных резервуаров (для одного грузового вагона объем запасного резервуара принимается равным 78л);

 $V_{P.P.}$ – объем рабочих резервуаров (для одного грузового вагона, можно принять объем рабочих резервуаров равным 9,5 л);

 $N_{\it ваг}$ — число вагонов в поезде. Для расчета грузовой поезд принимается равным 100 четырехосным вагонам.

РАСХОД НА ТОРМОЖЕНИЯ

Расход воздуха на торможение может быть определен по формуле:

$$Q_{mopмoжeния} = \Delta p_{TM} \cdot V_{mopм.cemu} \cdot n$$

где Δp_{TM} - величина средней ступени торможения (при расчете производительности компрессора, принимается равной 0,8 атм.);

n – среднее количество торможений за час (может быть принято равным 10).

Следовательно, в результате расчета получим:

$$Q_{ymeye\kappa} = 60 \cdot 0.2 \cdot (14.2 + 78 + 9.5) \cdot 100 = 122040 \, \pi/yac$$

$$Q_{mopмoжeнus} = 0.8 \cdot (14.2 + 78 + 9.5) \cdot 100 \cdot 10 = 81360 \, \pi/$$
час

$$Q_{o \delta u y} = 122040 + 81360 + 12000 = 215400 \, \pi/vac$$

$$Q_{oби} = \frac{215400}{60} = 3590 \pi / мин$$

Кроме того, необходимо также учесть утечки из $Q_{oбщ} = \frac{215400}{60} = 3590 \pi / muH$ главных резервуаров локомотива, которые составляют 120-150 л/мин. Тогда потребная производительность компрессорной установки получится равной примерно 3710-3740 л/мин.

ОБЪЕМ ГЛАВНЫХ РЕЗЕРВУАРОВ

Потребный объем главных резервуаров может быть определен по следующей зависимости:

$$V_{{\scriptscriptstyle \Gamma P}} = rac{\Delta p_{{\scriptscriptstyle T M}} \cdot V_{{\scriptscriptstyle MAP.}}}{\Delta p_{{\scriptscriptstyle \Gamma P}}}$$

где Δp_{TM} - величина снижения давления воздуха при полном служебном торможении (принимается равной 1,5 атм.);

 $\Delta p_{\Gamma P}$ - величина возможного снижения давления в главных резервуарах (принимается как разница между минимальным поддерживаемым давлением в главных резервуарах нормальным зарядным давлением в тормозной магистрали и равный 7,5-5,5=2,0 атм.).

Vмаг – объем тормозной магистрали поезда14,2*100=14200л.

$$V_{\Gamma P} = \frac{1,5 \cdot 14, 2 \cdot 100}{2,0} = 1065\pi$$

ПРОВЕРКА ДОСТАТОЧНОСТИ ОБЪЕМА ГР

Полученный объем главных резервуаров и производительность компрессора проверяются также на возможность зарядки отпуска тормоза после полного служебного и экстренного торможений. При этом должно выполняться соотношение:

$$\begin{split} Q_{_{\mathit{KOMNP.}}} \cdot t_{_{\mathit{OMN.}}} + \Delta p_{_{\mathit{TP}}} \cdot V_{_{\mathit{TP}}} &\geq \Delta p_{_{\mathit{MAZ.}}} \cdot V_{_{\mathit{MAZ}}} + \Delta p_{_{\mathit{P.P.}}} \cdot V_{_{\mathit{P.P.}}} + \Delta p_{_{\mathit{ymevek}}} \cdot V_{_{\mathit{mopm.cemu}}} \cdot t_{_{\mathit{omn.}}} \\ &+ \left(0.85 \cdot p_{_{\mathit{3P}}} - p_{_{\mathit{3P}}}^{_{/}}\right) \cdot V_{_{\mathit{3P}}} \end{split}$$

- $\Delta p_{\text{маг.}}$ снижение давления в тормозной магистрали при торможении (при полном служебном торможении принимается равным 1,5атм., а при экстренном торможении 5,0 атм.);
- $\Delta p_{P.P.}$ перепад давления в рабочих резервуарах (при полном служебном и экстренном торможениях можно принять равным 1,2-1,3 атм.);
- $\Delta p_{_{yme_{4}e_{K}}}$ темп снижения давления в тормозной сети из-за наличия утечек (принимается равным 0,2 атм./мин);
- $t_{omn.}$ расчетное время полного отпуска тормозов и подзарядки запасного резервуара до 85% от полного зарядного давления (для грузового поезда из 100 вагонов принимается равным 3 мин. после полного служебного торможения и 5 мин. после экстренного торможения); p_{3n} зарядное давление в запасных резервуарах (принимается равным 5,3-5,5 атм.);
 - $p_{\it 3P}^{\it I}$ давление в запасных резервуарах после торможения (после полного служебного и экстренного торможений можно принять равным 4,0 атм.);
- $\Delta p_{\Gamma P}$ допускаемый перепад давления в главных резервуарах (как было показано ранее может составлять до 2,0 атм.).